home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Info-Mac 3
/
Info_Mac_1994-01.iso
/
Science
/
FFT in asm Source
< prev
next >
Wrap
Internet Message Format
|
1993-12-30
|
8KB
From: Tom Barrett <barrett@pacific.mps.ohio-state.edu>
Date: Wed, 18 Aug 93 09:35:41 -0400
This is an updated version of /info-mac/sci/fft-in-asm-src.txt
* now works for data sets > 64k points
* other minor changes for speed improvements
* better documentation
Thomas Barrett
Physics Dept, Ohio State University
barrett@pacific.mps.ohio-state.edu
18 Aug 93
// ------------------------- cut here -------------------------
This code is a hand-assembled version of the fft routine from Numerical
Recipes. See the book for information about how it works. All variable
names in comments refer to those in the book.
To use this routine:
* You must have a math coprocessor.
* Use Think C (users of other compilers may be able to adapt it).
* Set "Native floating-point format" under "Compiler Settings" in the
Options... dialog box. This uses the 12-byte format which the math
coprocessor uses internally.
void tb_four1(long double *data, long nn, long isign);
* Store your data to be processed as an array of 12-byte long doubles.
Note that this will take more memory than the 8-byte doubles. Also,
the array must be of 'nn' complex numbers, where each complex number
is a pair of long doubles. 'data' should therefore be a pointer to
an array of 24*nn bytes.
* This routine is DESTRUCTIVE. The output data is placed in the space
where the input data was. If you still want the input, make a copy
and pass the copy to the routine.
* In the book Numerical recipes in C, from which this routine is taken,
the first element of the array is accessed as data[1]. This is an
error! C uses data[0] for the first element of an array. In C, this
can be corrected by using data[i-1] and data[i] instead of data[i]
and data[i+1] (they always occur in pairs). This routine expects
'data' to be a pointer to the first element of the array. If you
are replacing the C version, and compensated for this in the routine
that called four1 (like the book suggest), then this is an issue.
* 'nn' must be a power of 2 (like 8, 16, 32...). Useable range is between
8 and 128M (2^27 complex numbers).
* 'isign' must be 1 or -1, where -1 corresponds to an inverse fft.
* See the book for input and output formats.
I strongly recommend that, if you have an fft routine already working, you
test this to make sure it gives the correct values when placed in your
program (always a good idea). It's been used successfully for a
couple of months, and it is nearly twice as fast as the C version compiled
by Think C 5 with optimizations.
Thomas Barrett
Physics Dept, Ohio State University
barrett@pacific.mps.ohio-state.edu
Thanks to: Dan Flatin & Pascal Laubin.
#define PI 3.1415926535897932384626433
/* ----------------------- tb_four1.c -----------------------------
optimized version of Numerical Recipes' fft routine
Thomas Barrett, 1993
written for Think C
this routine assumes that data contains 12-byte 6888x-native long doubles
also, you must have a math coprocessor to run this routine
-------------------------------------------------------------------
register usage:
d0 I a0 data[I] fp0 WPR
d1 J a1 data[J] fp1 WPI
d2 M a2 data[0] fp2 WR
d3 loop, MMAX fp3 WI
d4 ISTEP fp4 TEMPR \
d5 NN,N fp5 TEMPI \ internal
d6 internal fp6 / calculations
fp7 /
---------------------------------------------------------------- */
void tb_four1(long double *data, long nn, long isign)
{
long double twopi = 2.0 * PI * isign;
asm 68020, 68881 {
movem.l a2/d3-d6,-(sp)
fmovem.x fp4-fp7,-(sp)
move.l nn,d5
clr.l d3
move.l d5,d3 ; d3 = loop counter
move.l #-1,d0 ; i(d0) = -1
movea.l data,a0
suba.l #12,a0 ; pointer to array indexed by 0
movea.l a0,a2 ; a2 = *(data[0])
suba.l #12,a0
; ------------ re-order values ---------------------------------
move.l #1,d1 ; j(d1) = 1
@bits adda.l #24,a0 ; a0 = *(data[i])
addq.l #2,d0 ; i += 2
cmp.l d1,d0 ; cmp j,i
bge @nosw ; branch if i(d0) >= j(d1)
@swap movea.l a2,a1
move.l d1,d6
; mulu.l #12,d6
lsl.l #2,d6 ; these four instructions are equivalent to
adda.l d6,a1 ; the mulu.l #12 and save a dozen cycles
lsl.l #1,d6
adda.l d6,a1 ; a1 = *(data[j])
fmove.x (a0),fp0 ; swap
fmove.x (a1),fp1
fmove.x fp1,(a0)
fmove.x fp0,(a1)
fmove.x 12(a0),fp0
fmove.x 12(a1),fp1
fmove.x fp1,12(a0)
fmove.x fp0,12(a1)
@nosw move.l d5,d2 ; m(d2) = nn(d5) = #points
@jloop cmp.l #2,d2
blt @jrdy ; branch if m(d2) < 2
cmp.l d2,d1
ble @jrdy ; branch if j(d1) <= m(d2)
@fixj sub.l d2,d1 ; j -= m
lsr.l #1,d2 ; m /= 2
bra @jloop
@jrdy add.l d2,d1 ; j += m
subq.l #1,d3
bne @bits
; --------------- order is now ready -------------------------
lsl.l #1,d5 ; n(d5) = 2*nn(was d5) = #long doubles
move.l #2,d3 ; mmax(d3) = 2
; -------------------- outer loop -----------------------------
@loop cmp.l d3,d5
ble @done ; branch if n(d5) <= mmax(d3)
move.l d3,d4
lsl.l #1,d4 ; istep(d4) = 2*mmax(d3)
fmove.x twopi,fp1
fmove.l d3,fp0
fdiv.x fp0,fp1 ; theta(fp1) = 2 pi / mmax(d3)
fmove.x fp1,fp0
fmove.w #2,fp2
fdiv.x fp2,fp0 ; fp0 = 1/2 theta
fsin.x fp0
fmul.x fp0,fp0
fmul.x fp2,fp0
fneg.x fp0 ; wpr(fp0) = -2 sin^2(1/2 theta)
fsin.x fp1 ; wpi(fp1) = sin(theta)
fmove.w #1,fp2 ; wr(fp2) = 1
fmove.w #0,fp3 ; wi(fp3) = 0
; ------------------ inner loops -------------------------
move.l #1,d2 ; m(d2) = 1
@mloop move.l d2,d0 ; i(d0) = m(d2)
move.l d0,d6 ; i(d0)
movea.l a2,a0
; mulu.l #12,d6
lsl.l #2,d6
adda.l d6,a0
lsl.l #1,d6
adda.l d6,a0 ; a0 = pointer to 1st i
movea.l a0,a1
move.l d3,d6 ; mmax(d3)
; mulu.l #12,d6
lsl.l #2,d6
adda.l d6,a1
lsl.l #1,d6
adda.l d6,a1 ; a1 = pointer to 1st j
move.l d4,d6 ; istep(d4)
mulu.l #12,d6 ; 12 * istep. pointer increment
@iloop move.l d0,d1
add.l d3,d1 ; j(d1) = i(d0) + mmax(d3)
; movea.l a2,a1
; move.l d1,d6
; mulu.l #12,d6
; adda.l d6,a1 ; a1 = *(data[j(d1)])
; movea.l a2,a0
; move.l d0,d6
; mulu.l #12,d6
; adda.l d6,a0 ; a0 = *(data[i(d0)])
fmove.x (a1),fp4 ; fp4 = data[j]
fmove.x fp4,fp7
fmul.x fp2,fp4
fmove.x 12(a1),fp6 ; fp6 = data[j+1]
fmove.x fp6,fp5
fmul.x fp3,fp6
fsub.x fp6,fp4 ; tempr(fp4) = wr(fp2)*data[j] - wi(fp3)*data[j+1]
fmul.x fp2,fp5
fmul.x fp3,fp7
fadd.x fp7,fp5 ; tempi(fp5) = wr*data[j+1] + wi*data[j]
fmove.x (a0),fp6 ; fp6 = data[i]
fmove.x fp6,fp7
fadd.x fp4,fp6
fmove.x fp6,(a0) ; data[i] = data[i] + tempr(fp4)
fsub.x fp4,fp7
fmove.x fp7,(a1) ; data[j] = data[i] - tempr(fp4)
fmove.x 12(a0),fp6 ; fp6 = data[i+1]
fmove.x fp6,fp7
fadd.x fp5,fp6
fmove.x fp6,12(a0) ; data[i+1] = data[i+1] + tempi(fp5)
fsub.x fp5,fp7
fmove.x fp7,12(a1) ; data[j+1] = data[i+1] - tempi(fp5)
adda.l d6,a0
adda.l d6,a1
add.l d4,d0 ; i(d0) += istep(d4)
cmp.l d5,d0
ble @iloop ; branch if i(d0) <= n(d5)
; ---------------update wr & wi ------------------------
fmove.x fp2,fp5 ; wtemp(fp5) = wr(fp2)
fmove.x fp2,fp6
fmul.x fp0,fp6
fadd.x fp6,fp2 ; wr(fp2) += wr(fp2) * wpr(fp0)
fmove.x fp3,fp6
fmul.x fp1,fp6
fsub.x fp6,fp2 ; wr(fp2) -= wi(fp3) * wpi(fp1)
fmove.x fp3,fp6
fmul.x fp0,fp6
fadd.x fp6,fp3 ; wi(fp3) += wi(fp3) * wpr(fp0)
fmul.x fp1,fp5
fadd.x fp5,fp3 ; wi(fp3) += wtemp(fp5) * wpi(fp1)
addq.l #2,d2 ; m(d2) += 2
cmp.l d3,d2
blt @mloop ; branch if m(d2) < mmax(d3)
move.l d4,d3 ; mmax(d3) = istep(d4)
bra @loop
; -------------------- done ----------------------------
@done fmovem.x (sp)+,fp4-fp7
movem.l (sp)+,a2/d3-d6
}
}